Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

REVERSE1(add2(n, x)) -> APP2(reverse1(x), add2(n, nil))
REVERSE1(add2(n, x)) -> REVERSE1(x)
SHUFFLE1(add2(n, x)) -> SHUFFLE1(reverse1(x))
SHUFFLE1(add2(n, x)) -> REVERSE1(x)
APP2(add2(n, x), y) -> APP2(x, y)

The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

REVERSE1(add2(n, x)) -> APP2(reverse1(x), add2(n, nil))
REVERSE1(add2(n, x)) -> REVERSE1(x)
SHUFFLE1(add2(n, x)) -> SHUFFLE1(reverse1(x))
SHUFFLE1(add2(n, x)) -> REVERSE1(x)
APP2(add2(n, x), y) -> APP2(x, y)

The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(add2(n, x), y) -> APP2(x, y)

The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(add2(n, x), y) -> APP2(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(APP2(x1, x2)) = 2·x1   
POL(add2(x1, x2)) = 1 + 2·x2   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

REVERSE1(add2(n, x)) -> REVERSE1(x)

The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


REVERSE1(add2(n, x)) -> REVERSE1(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(REVERSE1(x1)) = 2·x1   
POL(add2(x1, x2)) = 1 + 2·x2   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

SHUFFLE1(add2(n, x)) -> SHUFFLE1(reverse1(x))

The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SHUFFLE1(add2(n, x)) -> SHUFFLE1(reverse1(x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(SHUFFLE1(x1)) = 2·x1   
POL(add2(x1, x2)) = 1 + 2·x1 + x2   
POL(app2(x1, x2)) = x1 + x2   
POL(nil) = 0   
POL(reverse1(x1)) = x1   

The following usable rules [14] were oriented:

reverse1(nil) -> nil
app2(nil, y) -> y
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
app2(add2(n, x), y) -> add2(n, app2(x, y))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
reverse1(nil) -> nil
reverse1(add2(n, x)) -> app2(reverse1(x), add2(n, nil))
shuffle1(nil) -> nil
shuffle1(add2(n, x)) -> add2(n, shuffle1(reverse1(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.